
IDENTIFYING THE THERMOPHYSICAL PROPERTIES OF SUBSTANCES 

A. G. Shashkov UDC 536.2.01 

Schemes (procedures) are presented for identifying thermophysical properties. 
schemes are constructed on the basis of the structural analysis of problems of 
heat conductivity. 

The 

Identification is the construction of mathematical models on the basis of observations 
of phenomena or processes occuring in nature or industry [1-5]. Methods have been developed 
in identification theory for constructing mathematical models of dynamic systems from the 
results of measurements having errors. Thus, identification includes: i) planning of the 
experiment; 2) determination of the class to which the unknown operator belongs; 3) estima- 
tion of unknown parameters of the system operator. 

In those cases where the structure of the operator (mathematical model) is known from 
a priori information, identification involves only steps 1 and 3. The mathematical model 
of a linear system may be represented either by a weight function or a transfer function; 
the transition can always be made from these functions to a differential operator.* 

The mathematical model of a physical process is not and cannot be adequate to the 
process itself. Thus, the existence of a solution to a physical problem does not always 
imply the existence of a solution for its corresponding mathematical problem: the existence 
of the latter can be proven or disproved only through mathematical investigation. Thus, in 
studying a mathematical model, the physical considerations are necessarily of a tentative 
and probable nature, and by themselves cannot serve as proof of the adequacy of the model. 

The construction of schemes (procedures) of identification is based on the following 
arguments. Let a dynamic system of any type be under the influence of an effect character- 
ized by vector u of the "input" variables (determined or arbitrary). Then the dynamic sys- 
tem, in accordance with its internal properties, transforms these input variables u into 
output variables y, which may be represented as 

y = D u ,  

which  s h o u l d  be i n t e r p r e t e d  as  f o l l o w s :  a c e r t a i n  p h y s i c a l  o p e r a t o r  D a c t s  on t h e  i n p u t  
v a r i a b l e  u i n  such  a way t h a t  i t  i s  t r a n s f o r m e d  i n t o  o u t p u t  v a r i a b l e  y .  The p h y s i c a l  o p e r a -  
t o r  D may, w i t h  a c e r t a i n  d e g r e e  o f  a c c u r a c y ,  be r e p r e s e n t e d  by m a t h e m a t i c a l  o p e r a t o r  K, 
so t h a t  t h e  r e a l  mapping o f  t h e  i n p u t  v a r i a b l e s  u and o u t p u t  v a r i a b l e s  y w i l l  c o r r e s p o n d  
to its mathematical model: 

ym = K u .  

In this notation, it is assumed that u is measured exactly and is transformed approxi- 
mately into the quantity Ym; thus, the subscript m is used with y. Finding operator K is 
the procedure of identification. The structure of operator K and the value of its coeffi- 
cients should in a certain sense be optimum. The values of the parameters of the object 
(thermophysical properties, for example) cannot be obtained by direct observation, but the 
output signal is related to their numerical values. Thus, the criterion for an optimum 
determination of operator K should be a functional of the output variables of the object 

*It is assumed that the coefficients of the differential equations describing the process 
are independent of time. Otherwise, such a transition from a weight or transfer function 
to a differential operator is difficult. 
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Fig. i. Identification schemes: D) physical operator 
of the object; K) mathematical operator. 

of the study, its model, and the estimates* of the parameters of the object. We should 
note that the error 

e = y(t ,  b, n ) -  ym(t, ~, 0), (Vm = Ku) 

is a function of the values of y and Ym at moment of time t. Here~ it is assumed that the 
model is adequate and that the measurements are made with an error. Thus, the error e in 
this case is due to the error in the measurement of y and the estimate of the value of param- 
eter b, assumed to be equal to B. 

It is assumed that the object and its model are similar in structure (the measurement 
error does not alter the form of the model)~ This means that the output of the object 

y = f (u ,  b, n) 

and the output of the model 

y ~ =  f(u, ~, 0),  

where b is a parameter of the object; ~, an estimate of parameter b; n(t), measurement 
error (described by equations identical in structure). 

If the analytic expression is known for operator K, which depends on constant param- 
eters b, and measurements of the output variable y and input variable u are available, an 
estimate of b may be found from the condition of proximity of the object and its model, 
defined by the minimization of the functional: 

t 

t -  

where T is the duration of the measurement. 

The error will be minimal when the value of ~i is determined from the system of (m+l) 
equations with (m+l) unknown estimates (Be, ~i, ..., Bm): 

aE 
-08 ( = 0 ,  i =  O, 1, 2 . . . .  ', m. 

In the general case, when Ym depends nonlinearly on b, this functional may have several 
extremes. 

identification schemes are depicted in Fig. la and b; in Fig. la, when a known effect 
is acting on the object and the model and the output signals of the object and model, 

*An estimate here means numerical values to which the rule of estimation is applied in a 
specific case (an experimentally determined value of the parameter). 
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distorted by the error n(t), are compared; in Fig. ib, when the effect acting on the object 
is unknown, and the output variable of the object is measured with an error. 

The notation K -I (inverse operator) assumes that the model is reversible -- a unique 
input signal may always be found for a given input. In certain cases, the identification 
scheme may be as shown in Fig. ic. The usefulness of this scheme is that the output vari- 
able (its L-transform) is often represented as follows: 

g = KiKss �9 

U s u a l l y ,  e i t h e r  i t  i s  d i f f i c u l t  to f i n d  the i nve rse  opera to r  [K IK f ]  -~ or  the express ion  
found f o r  i t  cannot be used. In  many cases, these d i f f i c u l t i e s  can be avoided by represen-  
t i n g  y=KiKfu in the form 

-I 
K 2  g = K i u  �9 

O p e r a t o r  Kx can  a lways  be  f o u n d ,  howeve r ,  so t h e  p rob lem becomes s i m p l e r  -- we have  
to  f i n d  i n v e r s e  o p e r a t o r  K~ 1, t h e  e f f e c t  of .  which  on a c e r t a i n  v a l u e  o f  y i s  such  t h a t  i t  
is transformed into the already known quantity K~u. Further construction of identification 
schemes will proceed in the region of the L-transforms on the basis of structural schemes 
(models) of problems of thermal conductivity [6]. It should be pointed out that the time 
region of the error e is a function of the measured values, and only the criterion of the 
estimate of the proximity of the model to the object is a functional, the value of which 
depends on the observation time. 

In the region of the L-transforms, the error e = ~(p, b, n) -- ~m(P, B, 0) is already a 
functional. Here, the fact that the L-transform of Ym is exact and that u is an inexact L- 
transform of measurements of y is important. This inexactness is due to the following: a) 
the finite observation (measurement) time; b) measurement error y; c) the error in computing 
y. 

For the error due to the finite measurement time to be negligibl Z small, it should be 
no larger than the errors in the measurement of y and computation of y. To this end, it is 
necessary to select the proper value for ptp. The estimate of b in the L-transform region 
is determined from the condition of minimization of the functional 

E{g, gm, ~} = [g(P, b, n)--gm(P, ~, 0)] ~. 

In  d e v e l o p i n g  methods  o f  d e t e r m i n i n g  t h e r m o p h y s i c a l  p r o p e r t i e s ,  i t  i s  u s u a l l y  assumed 
t h a t  t h e  p r o p e r t i e s  o f  t h e  s u b s t a n c e  do n o t  change  w i t h  t im e  and a r e  i n d e p e n d e n t  o f  t e m p e r a -  
t u r e .  Such assumptions are sufficient for obtaining an analytical relationship between the 
observed quantities. Further, if such a relationship is found, the solution obtained is 
written relative to the sought coefficient. 

To compute the value of a given constant coefficient, it is sufficient to obtain values 
of the measured quantities (temperatures) for a single moment of time. However, the rela- 
tionship between these quantities (temperatures) before the measurement, when they are 
unknown, may be expressed by a convolution integral with a corresponding kernel. In this 
case, we need to record thermograms and approximate them with convenient expressions, as is 
typical of cases where the thermophysical properties of the object are measured during its 
normal operation. 
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Graphical determination of the coefficient of 
thermal activity b when the temperature is measured exactly 
(a) and with an error (b). 

We will show how the structural scheme in [6] can be used to obtain the fundamental 
relations between the measured and sought quantities, which can in turn be used to develop 
methods and procedures for determining the thermophysical properties of the test medium. 
To this end, let us examine several examples. 

Example. We need to determine (estimate) the value of the coefficient of thermal activ- 
ity b from measurements of the temperature $(0, t) of the surface of a half space (x=0) and 
the heat flux incident on the surface. 

The scheme of identification (determination) of the coefficient of thermal activity is 
shown in Fig. 2. The mathematical model of the half space (or semiinfinite rod, the lateral 
surface of which is thermally insulated) is represented by the operator i/b~pp. Depending 
on the program of the experiment, the dependent and independent variables should be indica- 
ted, i.e., the variables that are assigned (the input variable and the law of its change) 
and that are to be measured (the output variable) should be indicated. 

The schemes in Fig. 2a and b were constructed on the assumption that the heat flux is 
assigned (known exactly) and that the temperature $(0, t) is measured exactly (Fig. 2a). 
The error e is determined by the estimate of coefficient b, which may be found from the con- 
dition of the minimum of the standard deviation: 

1 1~ e2 ' E ~ ,  ~m, ~} -- I~i (o, ;)  - b V---f ~(o, p) = 

i.e., b is found from the expression 

de(b) --9[~i(O'd ovpl ( 1 ~ )  p) - -  --~>-=~_ $ (O, p)] q(O, p ) =  O, 

from which 

1 ~(0,  p) 
b =  

V F  ~i  (0, ;) 

In  t h e  g e n e r a l  c a s e ,  t h e  L a p l a c e  t r a n s f o r m  p a r a m e t e r  p i s  a complex  number.  In  p a r t i -  
c u l a r ,  i t  may be a p o s i t i v e  r e a l  number .  Then t h e  v a l u e  o f  t h e  q u a n t i t y  5 ( 0 ,  p) may be 
r e g a r d e d  as  t he  r e s u l t  o f  t h e  e f f e c t  ( i n t e g r a l )  of  t h e  h e a t  f l u x  q(O, p) o v e r  an i n f i n i t e l y  
l a r g e  i n t e r v a l  o f  t ime  w i t h  w e i g h t  f u n c t i o n  e -P  t .  The q u a n t i t y  ~ i ( O ,  p) may a l s o  be r e g a r -  
ded as the result of the effect of the temperature ~(0, t), but for a finite interval of 
time -- measurement time t i with weight function e-P t. The latter is very important, since 
it means that the difference 

tm ~-- 

1% (o, t) ~ -~d t  - -  $ (0, p) 
" ~ b V p 

will be small only at certain values of the number p, satisfying a certain criterion depen- 
dent on measurement time t i. 

The existence of such p, at which the difference 
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where e is small relative to the assigned number, may be regarded as a criterion of adequacy 
of the linear model throughout the measurement time interval. 

The value of e characterizes the degree of proximity of the model to the object. In 
particular, if we assume that the measurement of the temperature~i(0, t) and the computa- 
tion of its L-transform $i(0, p) are performed exactly, then the difference 

(0, p ) - - $ ( p )  1 _0, 
b 

when t h e  v a l u e  o f  b i s  found  f rom t h i s  e q u a t i o n .  A g r a p h i c a l  s o l u t i o n  t o  t h e  e q u a t i o n  i s  
shown i n  F i g .  3a .  However ,  i n  r e a l i t y ,  m e a s u r e m e n t s  o f  h i ( 0 ,  t )  a r e  a l w a y s  p e r f o r m e d  w i t h  
a l l  e r r o r  

(0, t )=  (0, t)__+ n, 

where  n i s  t h e  m e a s u r e m e n t  e r r o r ;  L, t r a n s f o r m  o f  t h e  q u a n t i t y  ~ and c o n t a i n s  an a d d i t i o n a l  
error attributable to the finiteness of the measurement time ti. Consequently, the value of 
b should be estimated from the condition of minimization of the functional 

which leads to the expression 

from which 

•  = p), 

i $(;), 
b-- 

b (p) +_ 

The graphical solution of the equation 

is shown in Fig. 3b. 

We may take as the estimated value of b any value from the interval Ab, determined by 
the error in the measurement of the temperature $i, the computing error, and the adequacy 
of the mathematical model. If Ab is too large, it may be assumed that the model -- parti- 
cularly in the case of linear models -- is inadequate. 

Example. We need to determine (estimate) the value of thermal conductivity a from 
measurements of the temperature $(0, t) of the surface of a half space (x = 0) and the tem- 
perature ~ (x, t) a certain distance x from the surface. 

The scheme of identification (determination) of thermal conductivity is shown in Fig. 
4. The model of the half space is represented by the operator e(-- x/C~C~p. The temperature 
~(0, t) is measured exactly, while the temperature #(x, t) is measured with a certain error. 
The value of a may be found from the condition of the minimum of the standard deviation 
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[ # i  (x, p) - -  e '"a ~ p ~(0 ,  ; ) p  = e~, 

i . e . ,  t h e  v a l u e  o f  a i s  f o u n d  f rom t h e  e x p r e s s i o n  

de (a) = 2 [~ (x, p) - -  e -  ~--~r p ~ (0, p)]- 2x ] /~p  e 
da 

and has the form 

~'~-~ P 0 (0, p) =0 

p X  2 * 

InZ [~i (x, p)/t~ (0, p)] 

In computing a, parameter p may be assigned several values. Then 

n pix z 

a =- ~ In 2 [~i(x,  p~)/~ (O,p,)] 
i = l  

If the temperature inside the rod (half space) is measured between points located distances 
xl and x2 from the surface, the theoretical formula has the form 

a = ~ gipiAx2/ln2 [~ (x2, p)l~ (xi, pi)] ,  

Ax = xi  - -  x~, -~ (x.,  p) < ~ (xi, p) �9 

In a number of cases, it is particularly convenient to obtain data on the thermal con- 
ductivity of a substance using frequency methods, when heating conditions change harmonically 
over time. The mathematical formulation of a given heattransfer problem in a substance 
depends substantially on the mode of the harmonic action, which is taken intoaccount either 
by means of boundary conditions or by the introduction into the equation of a term which 
describes the effect of internal heat sources. In the first case, a harmonic effect may be 
realized by the following methods: the passage of a sinusoidal electrical current through 
a thin conducting film deposited on the surface of the test substance; through the action of 
a modulated laser beam on the surface of the test substance. In the second case, a harmonic 
effect can be obtained by the passage of a sinusoidal electrical current through the test 
substance, which performs the function of a thermistor. It is understood that a specimen 
of the appropriate shape and dimensions is to be prepared from this substance. 

Example. We need to determine the thermal conductivity a from measurements of the tem- 
perature ~(0, t) of the surface of the end of a semiinfinite rod thermally insulated on its 
lateral surface and the temperature #(x, t) a certain distance x from the end surface. It 
is assumed that ~(0, t) =~o cos mt. Heat transfer is described by the standard equation of 
thermal conductivity. Then 

# (x, t) = Re #oei~tO (]co), 

where Re is the real part of the expression 

X ~ X -- 

~oei~t O (j~); G (]~) = e --r r e j r r 

Having isolated the real part, we obtain 

*Measurements analyzed using this formula are shown in [9] for asphalt. 
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F i g .  7. S t r u c t u r a l  scheme o f  tw o -d im en -  
s i o n a l  problem for thermal conductivity. 

x j_ ( ) e(x, t)=O0e V~l~cos ~t F'2-a l#~ " 

To compute  t h e  t h e r m a l  c o n d u c t i v i t y  a ,  we s h o u l d  measu re  t h e  t e m p e r a t u r e  ~ (0 ,  t )  and t h e  
a m p l i t u d e  o f  t h e  t e m p e r a t u r e  ~ (x ,  t )  i n  c r o s s  s e c t i o n  x a t  a f i x e d  f r e q u e n c y ,  We can meas-  

u r e  t h e  pha se  a n g l e  ~ = ~ V ~  and t h e n  compute  t h e  v a l u e  o f  a 

X 2 . X 2 X 2 

2@ @ ~z T 

where ~= 2wf; f = I/T; T is the period of temperature measurement. 

The data needed for the calculations are takenfrom thermograms of ~ (0, t) and ~ (x, t). 
The thermal conductivity can also be determined in another way (Fig. 5). 

A voltage proportional to the temperature @(0, t) is applied to the vertical plates of 
an oscillograph, while a voltage proportional to the temperature ~ (x, t) is applied to the 
horizontal plates. A figure formed by an orthogonal combination of two harmonically chang- 
ing functions will then be formed on the oscillograph screen: 

(0, t) = c o s ~ t ,  

~(x, t) =cos (~t--~) .  
X 

~oe r 

Having e x c l u d e d  t ime  t f rom t h i s  sy s t em  o f  e q u a t i o n s ,  we o b t a i n  t h e  e x p r e s s i o n  

~z (x ,  t) + ~z (0, t) 2 ~ (0, t) ~ (x, t) cos ~ sin2~ 

~e - z ~ r ~  ~oe r 
which  i s  t h e  e q u a t i o n  o f  an e l l i p s e ,  t h e  m a jo r  ax e s  o f  which  a r e  i n c l i n e d  t o  t h e  c o o r d i n a t e  
axes at a certain angle a. This angle is equal to 45 ~ when the amplitudes of the tempera- 
ture fluctuations are the same. There exists between Lissajous figures and the phase shift 
of two sinusoidally varying quantities with the same frequency a simple relation [7] 

M 
= 2 arctg - ~  , 

where  M and N a r e  segments  i n t e r c e p t e d  by  t h e  x and y a x e s ,  i n c l i n e d  a t  a n g l e s  o f  45 ~ and 
135 ~ to the axis ~ (0, t)/~o. This relation is valid if the amplitudes of the oscillations 
of ~(x, t) and ~(0, t) are the same. In our case, they are different. However, by using 
a cathode-ray oscillograph and controlling the gain, we can make the amplitudes identical. 
When this is not possible, another method [7] can be used. 

Impulsive action on a substance has recently been employed to determine its thermophys- 
ical properties. This action is described mathematically in the form of a delta function or 
a pulse of finite duration. Here, it is often necessary to know the moment of time at which 
the maximum temperature is attained at a certain point of the substance. The latter may be 
determined from the well-known L-transform of the mathematical model of heat transfer to a 
substance in [8]. The construction of the schemes for identifying the thermophysical prop- 
erties of substances for impulse methods is similar to the constructions examined here. 
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Fig. 8. Identification scheme. 

For many substances, the product of the density p and the specific heat c has a negli- 
gible dependence on temperature but a substantial dependence on thermal conductivity X. 
In this case, the function ~(~) must be known. To this end, let us look at an example. 

Example. We need to determine (estimate) the temperature dependence of thermal con- 
ductivity. We propose to obtain this estimate from the results of control of the constancy 
of the heat flux q(O, t) = qo incident on the end surface of a semiinfinite thermally insula- 
ted rod and measurements of the temperature ~ (0, t) of the end surface. 

The temperature dependence of the quantity AX($) may be evaluated in accordance with 
the scheme in Fig. 6. The function AX(~) is found from the condition of the minimum of the 
functional 

e { g i ( 0 ,  ;),~(o, n), A~(o ) )=  ?~(0, ; t - q0  ~ L / J ~ ( ~ ) d e  = e. 

A f t e r  t h e  t r a n s i t i o n  to  t he  o r i g i n a l ,  t h e  c o n d i t i o n  o f  t h e  minimum a c q u i r e s  t h e  fo rm 

2q0 1 ~(o,0 

(0, t) = .i A~ (o) d e .  
bo V~- ~o o 

In order to use the resulting equation to calculate the function AX(~), we make note of the 

fact that 2q~ ~t is calculated; $(0, t) is measured (thermogram data). 
boV~ 

Considering that each moment of time t corresponds to a certain temperature ~(0, t), 

2q0 the difference .--s t) may be approximated either by a function of temperature 
~ol/~ 

or of time 

Then in the first case 

2qo VT-- o (o, t) = f (~), 
bo VX 

2q~ I/7--# (0, 0 = +~(0 
b0 P'~ 

A~ (8 )=  x 0 - ~  f (~) o 

and in the second 

O b v i o u s l y ,  t h e  second  method o f  d e t e r m i n i n g  AX(~) i s  more c o n v e n i e n t ,  since it meas- 
ures not only $(0, t), but the derivative #t'(O, t). In the first case, the function AX(~) 
may be determined by graphical differentiation of the function f(~). 

Of special interest are methods of determining thermophysical properties based on the 
solution of two-dimensional problems of thermal conductivity, which make it possible to 
determine thermal conductivity a from measurements of the surface temperature of the test 
substance. In particular, the identification scheme constructed on the basis of solution 
of the following problems can be effectively used: 
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O,~ (x, v, t) 
Ot 

[a,~o(x!oy, t ) +  o~o(x, v, t)..] 
= a L ~ or" ' 

which has the form 

o ~< x <~,,,,, o < v < o o ,  

(x, y, t )=  T(x, y, 0 - - 0 ,  

~(x, y, O)= O, t<O, x~O, y~>O, 

0 ( +  O, + O, t) = ~oU (t), t~ (x, y, t)I~_. | = ~ (x, y, OIv_. |  O, 

0 (x, y, t) = Oo erfc x erfc ~ _  , t > O, x > O, y > O. 
2 V-a'[. 2 I." at 

The source of the temperature ~ (0, 0, t) may be a thin platinum wire placed on the edge of 
a model of a simulated fourth-space. The measurements of the temperature @ (l, 0, t) of the 
surface y = 0 at the point x = l, along with control of the constancy of the temperature @o, 
can be used to compute the thermal conductivity a. 

Coefficients a and b may also be determined on the basis of the solution of problems 
of finding the temperature field in the fourth-space when sources of constant power are 
acting on the limiting surfaces. Such a situation is simpler in terms of practical realiz- 
ation of the boundary conditions. The temperature field may be represented by the sum 

b \ 2 V ~  ~ i e f f c 2 v ~  ' 

i n  w h i c h  t h e  f i r s t  t e r m  r e f l e c t s  t h e  e f f e c t  o f  t h e  s o u r c e s  on  t h e  s u r f a c e  y = 0 and  t h e  
s e c o n d  t e r m  r e p r e s e n t s  t h e  e f f e c t  o f  t h e  s o u r c e s  on t h e  s u r f a c e  x = O. I n  t h e  r e g i o n  o f  t h e  
t r a n s f o r m s ,  ~ ( x ,  y ,  t )  h a s  t h e  f o r m  

TM) 
p 

This expression may be represented by the structural scheme in Fig. 7. 
the solution for the half space 

7~ (x, p) = _Wp . 1 ca -~ p 
p b g - p  e 

We should note that 

does not coincide with the expression for the fourth-space when y = O: 

x 

~i(x, o, p ) = S v  1 (e-r-~"~- 

In the region of the originals 

O(x, t) = 2.-~'V?- 
o 

x 0~<~ 
i erfc 2 V-------~' 

2Wp ~ 
o(o,  t) = -d.-#~ V t  , 

9(x' O't)= 2~Vp-vi-( ierfc x b  2 ~  + - ~ ) '  

,~ (o, o, 0 = 4 ~ _  V-{ . 
b ]/~ 

Methods of determining a and b may be realized on the basis of the identification scheme in 
Fig. 8. 

The theoretical formulas were obtained from the condition of minimization of the corres- 
ponding functionals. 
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HEAT TRANSFER FROM A SPHERICAL SOURCE 

IN A RAREFIED GAS 

A. E. Margilevskii, V. G. Chernyak, 
and P. E. Suetin 

UDC 533.6.011.8 

The heat-transfer problem from a sphere in a rarefied gas is solved using a 
model kinetic equation. Diffuse scattering of gas molecules by the sphere 
surface with arbitrary energy accomodation is assumed. 

A solution of the heat-transfer problem from a sphere in a rarefied gas with arbitrary 
values of the Knudsen number Kn was published in [i, 2]. Lees [i] used his own four-moment 
method for solution of the Boltzmann equation. In [2] the BGK model equation was used and 
complete energy accomodation of gas molecules on the sphere surface was assumed. 

In the present study an approximate equation of higher order [3] will be used, ensur- 
ing a correct value for the Prandtl number. For the boundary condition we will assume arbi- 
trary molecular energy accomodation on the sphere surface. Such a solution is of interest, 
first, so that model equations may be compared, second, to evaluate the accuracy of the four- 
moment method, and third, to provide a quantitative estimate of the energy accomodation coef- 
ficient for various gases when theory and experiment are compared. 

We will consider a sphere of radius Re, the temperature of which, Ts, differs from the 
gas temperature T~ in the undisturbed region, while T s = (T s -- T~)/T~ << i. Then the state 
of the gas is described by a distribution function close to Maxwellian: 

f (r, v) = [| [ 1 + h (r, v)], [!hit-< 1, 

( m 3/2 ( mv~ ) 
f | 1 7 4  exp - -  , 2nkT~ . 2kT~ (1) 

where n~ is the numerical gas density in the unperturbed region and k is Boltzmann's con- 
stant. 
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